
PRE201: Introduction to Visual FoxPro

This Workshop introduces you to Visual FoxPro and the
basics of how to use it. Plan to attend this session if you're

a beginning Visual FoxPro developer or you haven't worked
in Visual FoxPro before, and you would like to get more out

of the DevCon that follows.

In the beginning, was the dot
What is Visual FoxPro?

 It’s a standalone tool for data manipulation

 It’s a development tool for standalone, LAN, client-server, COM and Web
applications

 It’s a database engine

 It’s a programming language

 It’s part of Visual Studio

 It’s an integral part of Microsoft Windows

 It’s a religion

Well, yes and no. The first four are probably true. The last three are probably not,
although you may find adherents who believe some, all, or none, of those
statements. They also say there’s one born every minute. Let’s dig a little, starting
with a little history lesson.

Wayne Ratliff was the programmer, working for Martin Marietta and subcontracting
for the Jet Propulsion Laboratory, who started to create a natural-language-style
database engine and manipulation language on his IMSAI 8080 computer, in
assembler, in his spare time, in order to improve his chances in the football pool. One
thing lead to another, and he was soon marketing the product as dBASE. It was
purchased by Ashton-Tate, then Borland, and is now owned by dBASE, Inc. It was one
the key products in the making of the “PC Revolution” of the 1980s that lead to a PC
on every desk. In its heyday, a number of language-compatible “clones” such as
FoxBase, Clipper, dbMAN and many others competed fiercely for the hearts and
minds and wallets of developers.

Fox Software, based in Perrysburg, Ohio, was formed and run by Dr. David Fulton.
(“Dr. Dave” as he was affectionately known, was a great showman, who delighted in
meeting and presenting to his customers. He is a major reason that DevCon
continues to this day.) Fox Software created a fast, interpreted version of the dBASE
runtime and then broke the mold in going beyond the standard to introduce many
additional features. FoxBase ran on Mac, DOS and Unix platforms. FoxPro, starting
with version 2.5, supported Windows as well. Fox Software was acquired by Microsoft
in March of 1992. While there was a Macintosh version of Visual FoxPro 3.0,
subsequent versions run only on the Windows platforms.

In this paper, I look at how to learn Visual FoxPro. Mastering a computer language is
similar to mastering another skill. You need to progress through the levels of novice,

apprentice, and journeyman to reach the master level. Achieving mastery is not a
subject that can be taught in a morning, nor covered in a short paper. But mastery
starts with a good understanding of the fundamentals, and that is what I try to cover
here. First, I look at data, as is it the data that is really what it is all about – the
application is just a way to better manage the data. Second, I look at the language
itself, how to interact with the data, read it in and display it. The third section goes
beyond the basic procedural parts of the language into the power tools, control and
objects that build applications. Finally, the fourth section tries to pull together all of
the previous sections, and provide a perspective and philosophy of how an entire
application should be put together.

Part I - It’s the Data
Before we can plunge headfirst into developing FoxPro applications, a glossary and a
bit of abstract theory will make the applications work much better.

Terminology
A field is a single piece of information, such a person’s first name or an item’s price.
Divide up your information so that fields can stand on their own, and don’t need to be
sub-divided when you are processing. For example, if your part number is composed
of a part type, a region code, a rating and a sub-part number, such as AN-33-
X4-1234, it can often be better to break that information into separate fields and
combine it when needed, rather than try to be constantly splitting the field when
looking for all parts from one region.

Each field has a single datatype. Data types hold a particular kind of information;
have upper and lower limits on their capacity; and are restricted on what information
they can hold. Fields may be character, integer, date, datetime (a combination of
date and time), numeric, double, float, currency logical (true or false), memo (very
long freeform text or binary data). Specialized datatypes exist to hold OLE
information (general fields), Macintosh binary (picture fields), but are rarely used.

A collection of fields which hold a single piece of information are gathered together to
form a record. For example, you might record a check received from a customer as:

Field name Type Data

Customer
Number

Integer 4321

Check Number Integer 5678

Amount Numeric
(9,2)

$910.11

Date Received Date 22 July
2001

A collection of these records would form a table. The table of data can be viewed in
many ways, but the standard form used by the Fox BROWSE command looks like
this:

Custom
er

Chec
k

Amou
nt

Date

1243 3121 232 01/01/19
01

3232 4324
3

3343 02/02/20
02

23232 42 43.34 03/03/19
03

This geometry leads to other names for the items, records are often called rows and
fields columns.

In FoxPro, there are usually three ways to do anything, or no way at all. To create this
table we might type:

CREATE

And let the user interface guide us to what we wanted to create. Or we could type:

CREATE TABLE CheckRec (Customer I, Check I, Amount N(9,2), Date D)

Or:

DIMENSION laField[4,5]
dimension laField[4,5]
laField[1,1] = "Customer"
laField[1,2] = "I"
laField[1,3] = 4
laField[1,4] = 0
laField[1,5] = .F.
laField[2,1] = "CheckNo"
laField[2,2] = "I"
laField[2,3] = 4
laField[2,4] = 0
laField[2,5] = .F.
laField[3,1] = "Amount"
laField[3,2] = "N"
laField[3,3] = 9
laField[3,4] = 2
laField[3,5] = .F.
laField[4,1] = "ChkDate"
laField[4,2] = "D"
laField[4,3] = 8
laField[4,4] = 0
laField[4,5] = .F.
CREATE TABLE CheckRec FROM ARRAY laField

Each of these ways of creating a table has advantages and disadvantages. The first is
easiest for a beginner; he or she is guided in the choices to be made. The second is
quicker; one line of typing and you’re done. The third form, though, leads to the most
flexibility and control.

Design and Normalization
Now that you have a basic grasp on how to create tables of data, you face the task of
determining what goes where. Should all of the data be on one large table or should
the information be sorted into several smaller tables?

The answer is nearly always the latter – use multiple tables to separate different
items. There are exceptions, of course. If you are creating a quick and dirty set of
data to use for a week, and then throw away, stuffing everything into one table will
make the processing – your work – easier. But be careful! I once created a set of
labels to invite some customers to a golf tournament. Five years later, the outgrowth
of that system was charting the financial course for a 3000-person company.

The rules for splitting up items between tables are called normalization. Each table
(also called an entity) contains all of the attributes (fields) for one item. If an entity
can have more than a quantity of one attribute (for example, an order may have a
series of line items), then those items go into a second table. Tables are related to
one another by a description of how information in one table is associated with
information in another. In the order example, the order number is stored in both
tables, and we can say that there is a one-to-many relationship between the tables:
one order may have many line items. The typical relations are:

- one-to-many: parent to many children, such as an order to order item

- zero-or-one-to many: a lookup table may be referenced in none, some or
many other records

- one-to-one: data split across several tables for performance

These relationships defined in the design stage will not be of much use if the people
using the database system can add, subtract or modify data in all of the tables
without regard for the design. For that reason, FoxPro provides relational integrity to
the database, through the use of triggers (code automatically fired when a data
change takes place) and stored procedures (code stored within the database
container) to enforce the relationships defined on the data.

The Laury Group, Inc.
Placement Data System II
October 16, 1999

have describe

has

is referred by

describes hasdetermines

Generates

Results in

defines

Describes

belongs to

can have

requires

make up

describeconsists of

have describes

can belong to

describes

describe

describes

describe consists of

have

describes

describes

describes

fills

are made up of
Calls to create

Supervises

Calls in

supervises

is billed for

recruit

Receive

qualify for

Receives agenda for

Receives Invoices for

Is the primary contact for

Describes

iEmpPK:I

iEmpStatFK:I

iEmpRaceFK:I

iRefByFK:I
lEmpBonus:L

iEmpClasFK:I

iEmpRecrFK:I

cEmpCode:C(8)

cEmpNumber:C(10)
cEmpFirst:C(20)

cEmpMidIni:C(1)

cEmpLast:C(25)

cEmpAddr1:C(30)

cEmpAddr2:C(30)
cEmpCity:C(17)

cEmpState:C(2)

cEmpZip:C(10)

cEmpPhnAC:C(3)

cEmpPhone:C(8)

cEmpPhnExt:C(6)
cEmpAltAC:C(3)

cEmpAltPhn:C(8)

cEmpAltExt:C(6)

cEmpCellAC:C(3)

cEmpCellPh:C(8)
cEmpBeepAC:C(3)

cEmpBeeper:C(8)

cEmpEmail:C(50)

lEmpPermOK:L

mEmpNotes:M
cEmpPhoto:C(40)

cEmpResume:C(40)

dEmpResRec:D

dEmpInterv:D

cEmpGender:C(1)

cEmpSkills:C(1)
cEmpAtt:C(1)

cEmpPres:C(1)

cEmpSSN:C(11)

dEmpDOB:D

lEmpMedEl:L
lEmpMedCov:L

lEmpCautn:L

mEmpAvail:M

cEmpAvTerm:C(1)

dEmpAvStrt:D
dEmpAvEnd:D

dEmpLstSpk:D

Employee

Client

iClientPK:I

iIndustFK:I

iCliStatFK:I
iClCrStaFK:I

iCliEnviFK:I

iContactFK:I

iBillToFK:I

iAgendaFK:I
cClCode:C(10)

cCode:C(5)

cClName:C(30)

cClAddr1:C(25)

cClAddr2:C(25)
cClAddr3:C(25)

cClCrossSt:C(25)

cClCity:C(18)

cClState:C(2)

cClZip:C(10)

cClPhoneAC:C(3)
cClPhone:C(10)

cClPhnExt:C(6)

cClFaxAC:C(3)

cClFaxNo:C(13)

cClWebSite:C(40)
cClEmail:C(40)

cClContact:C(25)

cClCntTitl:C(25)

tClStart:T

tClEnd:T
iClNoOfEmp:I

cClBillCnct:C(25)

iClInvLevl:I

lClConsult:L

iClAgenFmt:I
iClAgenCnt:I

nClComm:N(6,2)

mClNotes:M

nClLastJob:N(4,0)

iSkillPK:I

cSkillCode:C(10)
cSkillDesc:C(40)

lSkillInac:L

SkilliEmpSkilPK:I

iEmpFK:I

iSkillFK:I

cESklLevel:C(1)
iESklScore:I

cESklDesc:C(30)

mESklNotes:M

EmpSkill

iContactPK:I

iClientFK:I

iRoleFK:I
cCntCode:C(2)

cContact:C(30)

cCntFirst:C(20)

cCntLast:C(20)

cCntAddr1:C(30)

cCntAddr2:C(30)
cCntCity:C(25)

cCntState:C(2)

cCntZip:C(10)

cCntPhnAC:C(3)

cCntPhone:C(13)
cCntPhnExt:C(6)

cCntFaxAC:C(3)

cCntFax:C(13)

cCntEmail:C(40)

dCntDOB:D
nCntInvLim:N(10,2)

Contact

BookDate

iBookDtPK:I

iBookingFK:I

dBDBkDate:D

lBDBooked:L
tBDArrive:T

tBDLeave:T

tBDActStrt:T

tBDActEnd:T

nBDLunch:N(3,0)

iJobCatPK:I

cJobCCode:C(10)

cJobCDesc:C(35)

lJobCInact:L

JobCateg

iBookingPK:I

iEmpFK:I

iJobFK:I

iCIBFK:I

iSupervFK:I
dBkWeekEnd:D

cBkDesc:C(80)

lBkSpcSchd:L

tBkStart:T

tBkEnd:T

lBkReturn:L
mBkNotes:M

nBkBillRate:N(6,2)

nBkPayRate:N(6,2)

lSunRate:L

cBkChkDist:C(1)
iBkChkNo:I

dExpADP:D

dExpInv:D

tBkEntry:T

tBkModify:T
cBkUser:C(10)

Booking

EmpStat

iEmpStatPK:I

cESCode:C(10)
cESDesc:C(40)

lESInact:L

iCliRatePK:I

iJobCatFK:I

iClientFK:I

nCRRate:N(6,2)

CliRate

iJobPK:I

iClientFK:I

iDeptFK:I

iJobCIBFK:I

iJobSuprFK:I

iJobBillFK:I
iJobCatFK:I

iJobStatFK:I

tJobStart:T

tJobEnd:T

cJobNum:C(10)
cJobRptToF:C(10)

cJobRptToL:C(15)

cJobRptAC:C(3)

cJobRptPhn:C(8)

cJobRptExt:C(6)

cJobDept:C(40)
cJobRptLoc:C(80)

mJobNotes:M

cJobWrkLd:C(1)

nJobPctPer:N(3,0)

nJobHrsWk:N(5,2)
cJobDesc:C(40)

cJobRptCmt:C(80)

lJobInvSep:L

tJobModify:T

cJobUser:C(10)

Job

iEmpClasPK:I

cECCode:C(10)
cECDesc:C(30)

lECInact:L

EmpClass

iIndustPK:I

cIndCode:C(10)

cIndDesc:C(30)

lIndInact:L

Industry

iJobSkilPK:I

iJobFK:I

iSkillFK:I

cJSLevel:C(1)

JobSkill

Duty

iDutyPK:I

cDutyCode:C(10)

cDutyDesc:C(30)
lDutyInact:L

Dept

iDeptPK:I

iClientFK:I

iContactFK:I

cDptCode:C(10)

cDptName:C(40)

cDptAddr1:C(20)
cDptAddr2:C(20)

cDptCity:C(20)

cDptState:C(2)

cDptZip:C(10)

cDptAC:C(3)
cDptPhone:C(8)

cDptPhnExt:C(6)

iJobDutyPK:I

iDutyFK:I

iJobFK:I

nJDPercent:N(3,0)

JobDuty

iEmpIndPK:I

iEmpFK:I

iIndustFK:I

EmpIndus

iRolePK:I

cRoleCode:C(10)

cRoleDesc:C(30)
lRoleInact:L

Role

iJobStatPK:I

cJobStCode:C(10)
cJobStDesc:C(25)

lJobStInac:L

JobStat

iTaskPk:I

cTaskCode:C(10)

cTaskDesc:C(25)

lTaskInact:L

Task

iJobTaskPK:I

iTaskFK:I
iJobFK:I

JobTask

iEmpAvPK:I

iEmpFK:I

dEADate:D

lEAAvail:L

EmpAvail

iCliStatPK:I

cCSCode:C(10)

cCSDesc:C(25)
lCSInact:L

CliStat

iEmpRacePK:I

cERCode:C(10)
cERDesc:C(20)

lERInact:L

EmpRace

iClCrStaPK:I

cCCCode:C(10)

cCCDesc:C(20)

lCCInact:L

ClCrStat

iEmpRecrPK:I

cEmpRCode:C(10)

cEmpRDesc:C(30)
lEmpRInact:L

EmpRecru

iClCommPK:I

iEmpFK:I

iClientFK:I

nClCommPct:N(6,2)

ClCommis

iCliEnviPK:I

cCECode:C(10)

cCEDesc:C(40)

lCEInact:L

CliEnvi

Much more information on data design and normalization can be found on the
internet or a good introductory text on database design.

Reading and writing data
Interactive

REPLACE, APPEND BLANK, BROWSE, EDIT

VFP Commands

REPLACE, APPEND, COPY, DELETE

SQL Commands

INSERT, UPDATE, DELETE

Transactions and buffering
There are some times in a relationship when you are not ready to commit. There are
times when changes to a relational database should not be committed, either,
perhaps because a change involves multiple tables and the changes are not yet
complete, or because one of a set of changes failed to update properly. Enter
buffering and transactions.

Buffering allows data to be stored on the local machine until all changes are ready to
be made at once. This prevents tying up shared data resources until the last possible
minute, and allows local processing to examine old and new values of data (each
stored in a separate buffer) to determine how a change should be handled.

Transactions are the other end of the process, once you are ready to commit the
data. A transaction locks data records as the changes are committed, and allows the
entire set of updates (“a single transaction”) to either be completed successfully or
rolled back completely. Visual FoxPro provides support both for local (DBF-based)
transaction processing and for transaction processing in a client-server arrangement.

Client server data

Why client-server?
There are three practical reasons to move a DBF-based application to a client-server
architecture:

Too much data: VFP has a physical limit of 2Gb for a single table or memo file, but
the limit can often be hit earlier, when the amount of time to PACK or REINDEX a VFP
table exceeds the recovery time of a client server system following a crash. As more
operations move towards 24x7, this factor has become increasingly important.

High-security information: While it is possible to crack a client-server database,
the likelihood is far greater in a VFP system where clients must have access to the
underlying tables

Low bandwidth: VFP was designed to thrive in a network environment, and it takes
advantge of the large bandwidth to locally cache file headers, indexes and records.
While this results in remarkable Rushmore performance on a LAN, it can result in
unacceptably slow performance in a WAN situation.

There are numerous other, more pragmatic reasons to move to a client-server
architecture, including the need for flexibility in distributing processing, and the
political necessities of some environments.

The ACID test – Atomicity, Consistency, Isolation, Durability
Many organizations justify their need for a client-server architecture with the ACID
test. A well-designed client server system meets all of the following criteria:

Atomicity: all data changes within a transaction are treated as a single indivisible
unit, where all are completed or all are rolled back as a unit.

Consistency: the integrity rules for the database are enforced at all times, so that the
database is always in a consistent and valid state.

Isolation: results of a transaction are invisible until they are complete, and one
transaction’s intermediate results should not affect another transaction. If one
transaction causes the initial conditions of a second transactions to fail, the second
transaction should fail.

Durability: once the data has been committed, it will be stored and retrieved even if
the system suffers the loss of a hard disk or a processor or any other component that
doesn’t destroy the system. Transactions cannot be “lost.”

Part B – It’s the coding

VFP: commands, functions, object, PEMs and design surfaces
XBASE commands: USE, BROWSE, REPLACE, APPEND, LOCK, DO, IF, CASE

SQL commands: SELECT, INSERT, DELETE, UPDATE

Output: ? REPORT FORM, @ …SAY, CALCULATE, LIST/DISPLAY

Text Manipulation: Textmerge, LLFF, String functions

Controls

Text-based controls: Label, TextBox, EditBox, Spinner

Pick-list controls: ComboBox, ListBox

Buttons: CommandButtons, OptionButtonsGroups, CheckBoxes

Containers; Grids, PageFrames, CommandButtonGroups

Graphical elements: Images, Lines, Shapes, Separators (toolbars only)

OLE: both OLEBound (associated with data) and Container (OCX) controls

Invisible control: timer

Working with controls
Controls, in their simplest form, are simply the new versions of SAYs and GETs. But
controls are so much more! They offer much finer control of the individual objects
properties, the ability to change these properties at run-time, and the ability to
define the code which should run when an event happens. Events are also much
more numerous, giving us the chance to create interfaces more responsive to the
user.

The controls supplied with Visual FoxPro are the starting point. These controls can
(and should!) be subclassed to create our own custom controls. Multiple controls may
be combined to form complex controls, better reflecting the complexity and business
rules of the particular application. Custom controls can be created, saved and reused.

Properties
Properties describe a characteristic of a control. Most are available both at design
and run-time, one exception being the class properties, which are read-only when the
control is created. These properties are the data of the control which is
"encapsulated" with the control. Most controls share a number of common
properties:

Common Property Purpose

Top, Height, Left, Width The location on the form of
the object, if a visual control

Comment Probably the single most
important property; let's you
figure out what you were
doing when you return to it

BaseClass, Class,
ClassLibrary

The pedigree of the control

Name How the control is named by
all code within the form
which refers to it

Visible Whether the control should
appear

DragMode, DragIcon Behavior during mouse drag
operations

HelpContextID Your hook from the control
into your custom help file

FontName, FontSize,
FontItalic, FontBold,
FontOutline,
FontStrikethrough,
FontUnderline

 For all text-based controls

ColorScheme, ColorSource,
BorderColor, ForeColor,
DisabledForeColor,
BackColor,
DisabledBackColor

Colors.

Then, there are properties specific to an individual control or two: Interval: how often
a Timer control fires,

SpinnerHighValue, SpinnerLowValue, and a slew of others!

Events
Events occur when the user has taken some action, or programmatically when a
control changes status. It is not possible to define new events. Common events
include:

Event Purpose

Init Code run once when the
control is created

Destroy Code run when the control is
released

DragDrop, DragOver How to behave when a
dragged object is over and
dropped

MouseMove Mouse movement over a
control

Click, RightClick, DblClick,
MouseDown, MouseUp

Both mouse buttons!

Error How errors are handled

GotFocus, LostFocus Code when control is tabbed
to or clicked on

When, Valid Our old friends.

Methods
Methods tend to be more individual to the controls, as they describe the unique
behavior of the control. The most common are:

Method Purpose

Drag What to do if control is
dragged

Move Moves controls within a
container

SetFocus Programmatically "send"
focus to a control

Refresh Each time the control needs

to be redisplayed, the code
runs.

Individual methods include the Reset method for the Timer control, and the DoVerb
methods for the two OLE controls.

Manipulating controls: Property Sheet & Builders
Property sheets, like our demo program, give us access to the various programmable
and fixed properties, events and methods. Builders give an alternative view into a
limited number of properties, simplifying the construction of objects.

Property sheets are tools that let us climb under the hood and tweak all the levers
and dials. Builders don't have that depth, but don't have the complexity, either.

A Typical Builder

A Property Sheet

Creating your own custom controls
You will want to create your own set of custom controls so that you can manipulate
the base classes and modify their properties and behaviors. It is a good idea to
create a set of 'generic' but subclassed controls and use these, rather than the
standard toolbar, as the basis for prototyping screens. Create a custom control by
placing a control on a form, highlighting it, then selecting 'Save as class..." from the
"File" menu.

Most of the literature on the subject of OOP states that it is a learning process, and a
different way of looking at problems. Anticipate that your first solution may not
always be the best one. If possible, prototype your first development in Visual FoxPro
on a system you can throw away. In subsequent systems, beware of the problem of
over-engineering a solution.

Don't be afraid to throw out your work.

Don't subclass it to death - three or four levels is about all you'll comprehend.

Event model
In years past, FoxPro was based on a procedural model, when code started at the top
of a procedure and executed line-by-line until it was done. Message loops and “Get-
less READs” could be used to simulate an event-driven system, but there was a tricky
series of obscure behaviors to get it to work. With the advent of Visual FoxPro, a new,
clean event model was introduced that allows a much simpler and more
comprehensible approach to providing a truly event-driven system.

What are Events?
"An action, recognized by an object, for which you can write code to respond. Events
can be generated by a user action, such as clicking the mouse or pressing a key, by
program code, or by the system, as with timers."

- FoxPro Help File

Event firing sequences
Probably some of the most difficult functionality to understand. Typically, a container
cannot perform its action until its contents exist, therefore, objects are created from
the inside out: textbox–›column–›grid–›page–›pageframe, and destroyed in the
opposite fashion, from the outside in, imploding.

How to program for events?
The Foundation read is no more, except for legacy code we attempt to migrate to
Visual FoxPro. Forms are it. The concept behind Visual FoxPro is that the initial
application environment can be set up, a menu can be hoisted to the top of the
screen, and READ EVENTS will hold the entire application together until the user
chooses to quit. Time will tell if this model proves robust enough for commercial
applications.

So what are the new events?

Event Applies to: What it does / what to put there
INIT All but Column, Header,

Page, Separator
Fires when the object is created, optionally

accepts parameters. If it returns .F., object is not
created. Contained objects fire before

containers, in the order added.
ERROR Same Fires when an error occurs in the method of an

object - passes error #, method name and line
number. Fires before ON ERROR.

DESTROY Above, plus
CommandGroup and

OptionGroup

Code runs just before an object is released.
Containers fire before contents.

DRAGOVER,
DRAGDROP

Above, plus Cursor,
Custom,

DataEnvironment,
FormSet, Relation,

Timer

Fires during and upon completion respectively
of a drag & drop operation. Code must include

parameters statement to accept the dragged
object reference and mouse coordinates.

MOUSEMOVE Column, but not to
above, plus OLEControl,

OLEBoundControl

Tracks mouse movements over an object. Also
passes status of Ctrl-Alt-Shift keys, as well as

left, middle and right mouse button statuses.
CLICK, MOUSEDOWN,

MOUSEUP
Not to Column,

otherwise same as above
Mouse click

UIENABLE CheckBox, ComboBox,
CommandButton,
CommandGroup,

Container, Control,
EditBox, Grid, Image,
Label, Line, ListBox,
OLEBoundControl,

OLEControl,
OptionGroup,

PageFrame, Shape,
Spinner, TextBox

Fires when control becomes visible because of
activation of container, such as PageFrame.

RIGHTCLICK Above, plus Form,
Header, OptionButton,
OptionGroup, but NOT

OLEBoundControl,
OLEControl

Right mouse click on control.

GOTFOCUS,
LOSTFOCUS

CheckBox, ComboBox,
CommandButton,

Container, Control,
EditBox, Form,

ListBox,
OLEBoundControl,

OLEControl,
OptionButton, Spinner,

TextBox

Occurs when the control is tabbed to, or clicked
on.

VALID, WHEN CheckBox, ComboBox,
CommandButton,
CommandGroup,

EditBox, Grid, ListBox,
OptionButton,

OptionGroup, Spinner,
TextBox

Good old WHEN and VALID, fire before
accepting a change (after receiving focus) and

after a change is made.

ERRORMESSAGE CheckBox, ComboBox,
CommandButton,
CommandGroup,
EditBox, ListBox,

OptionButton,
OptionGroup, Spinner,

TextBox

When VALID returns a .F., allows display of an
error message. "Included for backward

compatibility"

MESSAGE same as above Displays status bar text. Another " backward
compatibility." Property StatusBarText provides

similar capabilities.
KEYPRESS CheckBox, ComboBox,

CommandButton,
EditBox, Form, ListBox,
OptionButton, Spinner,

TextBox

Allows processing of input keystroke-by-
keystroke, rather than waiting for input to be

completed.

MOVED Column, Container,
Control, Form, Grid,
OLEBoundControl,

OLEControl,
PageFrame, Toolbar

Fires when the object has been moved.

RESIZE same Fires when the object has been resized.

InteractiveChange,
ProgrammaticChange

CheckBox, ComboBox, ,
CommandGroup,
EditBox, ListBox,

OptionGroup, Spinner,
TextBox

What UPDATED() always should have been,
but at a finer level. Fires each time a change is

made via mouse or keyboard, even before focus
has shifted from the control. INTERACTIVE

detects user changes, PROGRAMMATIC
changes performed in code.

ACTIVATE,
DEACTIVATE

Form, FormSet, Page,
Toolbar

Similar to the 2.x Screen's show clause. Occurs
when container gets the focus or Show() method
runs. Toolbar.Hide() also runs DEACTIVATE

RANGEHIGH,
RANGELOW

ComboBox, Listbox,
Spinner, TextBox

Dual functions. For ComboBox and ListBox,
returns the initially selected element when the

control gets the focus. For Spinners &
TextBoxes acts as a RANGE test, returning a

numeric when focus to the control is lost.
DOWNCLICK ComboBox, ListBox,

Spinner
Not to be confused with MOUSEDOWN, fires
when the down- or up-ward-pointing arrow is

pressed.
LOAD, UNLOAD Form, FormSet Load occurs after Init, but before Activate and

GotFocus. UnLoad is the last event to fire.
PAINT Form, Toolbar When the item re-paints. CAUTION: don't

RESIZE or refresh() objects within PAINT or a
"cascading" series may occur!

BEFOREOPENTABLES,
AFTERCLOSETABLES

Data Environment Wrappers around the automatic behavior of the
Data Environment. Occurs before OpenTables()

method and after CloseTables() methods.
AFTERDOCK,

BEFOREDOCK,
UNDOCK,

Toolbar Code which can run while user is manipulating
a toolbar.

BeforeRowColChange,
AfterRowColChange

Grid Before the Valid of the row or column of the
cell being left, and after the When of the cell

being moved to.
DELETED Grid When user marks or unmarks a row for deletion.

SCROLLED Grid User movement, parameter will return whether
by cursor keys or scroll bars and which one.

DROPDOWN ComboBox Fires after DOWNCLICK, to allow interactive
changes to the contents of the drop down list.

TIMER Timer Fires when Timer is enabled and Interval has
passed.

QUERYUNLOAD Form Allows testing the ReleaseType property to
determine if a form is being released using the

close box or programmatically.
READACTIVATE,

READDEACTIVATE,
READSHOW,
READVALID,
READWHEN

Form Similar to 2.x READ model, only works in
'Compatibility' modes

What to do now?
Experiment. 90% of the time the standard WHEN and VALID will provide all the
functionality needed in data entry fields. Specialized input fields, such as Spinners,
have finer control. Click is a more intuitive place to put button-firing code than VALID,
but either (though not necessarily both!) work. Add new Events to your arsenal as the

need arises. Anticipate some great third party tools that know how to really take
advantage of all the new features.

The tools
 Project Managers

 Code Editor

 Form Designer

 Class Designer

 Menu Designer

Part III: Advanced topics
Object oriented analysis and design

COM and n-tier design

User Interface Design

Project Management

Part IV: Putting it all together
RTFM – VFP comes with an excellent set of resources. Browse the help file. There is a
tremendous amount of well-organized material there.

Don’t fight the tide. Learn to become one with the Fox by thinking the way the Fox
thinks.

Get a framework

Get a support group: mailing lists, online communities, magazines & newsletters

Sharpen the saw – books and conferences

Top Ten Mistakes

About the Author

Ted Roche

Ted Roche
&

Associates
, LLC

Ted Roche is president of Ted Roche & Associates, LLC, a
consulting firm based in New Hampshire. He is author of
Essential SourceSafe, co-author with Tamar Granor of the
award-winning Hacker's Guide to Visual FoxPro 6, and a
contributor to 5 other FoxPro books. A former Contributing
Editor for FoxPro Advisor magazine, Ted is a Microsoft
Certified Solution Developer, Systems Engineer and seven-
time Microsoft Support Most Valuable Professional. Contact
Ted at tedroche@tedroche.com

References
My 15-year immersion in Fox software and the other dBASE variants would have
been a much shallower and weaker experience had it not been for the thriving online
communities – CompuServe, the Fox Wiki, the ProFox mailing list – that have brought
depth and meaning and humanity to the experience. Thanks to all of those who
participated. If you are not yet involved in an online community, find one and, at the

mailto:tedroche@tedroche.com
http://www.hentzenwerke.com/catalogavailability/hackfox6.htm
http://www.hentzenwerke.com/catalogavailability/essvss.htm
http://www.tedroche.com/
http://www.advisor.com/CMF0109p.nsf/rocht

least, lurk in the background for a while. The support and education is invaluable, at
a very reasonable cost.

Online communities
Nearly the granddaddy of them all, CompuServe has opened their forums to the web.
Start at http://www.compuserve.com, and go from there. A direct link that works for
me is http://go.compuserve.com/MSDevApps?loc=us - your mileage may vary.

Probably the most active FoxPro community on the web today is
http://www.universalthread.com, with many well-known authors and speakers
frequenting the site. A close runner-up is the repository of knowledge built up by its
members at http://fox.wikis.com - a remarkable, organic site that allows visitors to
add, edit and enhance the existing web site. But there are a number of other
worthwhile sites. Rod Paddock hosts http://www.foxforum.com . Ed Leafe hosts the
ProFox mailing list; you can sign up at http://www.leafe.com, and the Virtual FoxPro
User Group is online at http://www.vfug.org/.

Books
I’m a big advocate of learning by reading. There are a lot of fascinating books out
there, and I am always in the process of reading a few at a time. If this isn’t your
style, consider hanging around with people who are keeping up with the latest books
– by visiting their web sites, listening to them at conferences and user group
meetings, or working with them.

Steven Black has an extensive reading list at http://www.stevenblack.com - look for
“bookshelf.” Whil Hentzen maintains another list at http://www.hentzenwerke.com -
his is called “The Stacks.” Between those two lists alone, you will find most, if not all,
of the books I would recommend as well.

Magazines
FoxPro devotees should keep up on what’s happening in the FoxPro world by reading
everything that’s available out there. Of course, that would mean that there would be
no time left for other activities, like programming, or sleep, or this “life” thing I keep
hearing about. My advice is to subscribe to all the magazines that interest you and at
least skim the table of contents. That way, you can read the articles that essential for
you to know right now, and store away knowledge that there are other articles you
can get back to later. FoxTalk (http://www.pinnaclepublishing.com/ft) and FoxPro
Advisor (http://www.advisor.com/www/FoxProAdvisor) are the leading magazines in
the field.

User Groups
A user group typically meets one evening a week to swap stories, network,
demonstrate some code or product, and support each other. These offer a great
chance to get out of the house, meet with people of similar interests, find new jobs,
locate consultants or consulting opportunities, and keep up with what is going on in
the industry. There are lists of user groups at http://fox.wikis.com/wc.dll?
Wiki~CategoryUserGroups, http://www.bostonusergroups.com, or hit your favorite
search engine to locate a group near you? No groups nearby? Start your own!

http://www.bostonusergroups.com/
http://fox.wikis.com/wc.dll?Wiki~CategoryUserGroups
http://fox.wikis.com/wc.dll?Wiki~CategoryUserGroups
http://www.advisor.com/www/FoxProAdvisor
http://www.pinnaclepublishing.com/ft
http://www.hentzenwerke.com/
http://www.stevenblack.com/
http://www.vfug.org/
http://www.leafe.com/
http://www.foxforum.com/
http://fox.wikis.com/
http://www.universalthread.com/
http://go.compuserve.com/MSDevApps?loc=us
http://www.compuserve.com/

Links

An excellent explanation of the ACID principles is available on
http://www.arsdigita.com/books/panda/databases-choosing

Lammers, Susan, Programmers at Work, Microsoft Press, 1986, features a fascinating
interview with Wayne Ratliff (while he had an office at Ashton-Tate, and the IBM AT
was considered a bargain at $6,000)

dBASE is a registered trademark of dBASE Inc. Other dBASE Inc. product names are trademarks
or registered trademarks of dBASE Inc.

Originally presented as a pre-conference session at the FoxPro Dev 2001, San Diego,
CA, September 8, 2001. Copyright © 2001-2008 by Ted Roche.

This work is licensed under the Creative Commons Attribution-Noncommercial-Share
Alike 3.0 United States License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

http://www.arsdigita.com/books/panda/databases-choosing

	PRE201: Introduction to Visual FoxPro
	In the beginning, was the dot
	Part I - It’s the Data
	Terminology
	Design and Normalization
	Reading and writing data
	Transactions and buffering
	Client server data
	Why client-server?
	The ACID test – Atomicity, Consistency, Isolation, Durability

	Part B – It’s the coding
	VFP: commands, functions, object, PEMs and design surfaces
	Controls
	Working with controls
	Properties
	Events
	Methods
	Manipulating controls: Property Sheet & Builders
	Creating your own custom controls

	Event model
	What are Events?
	Event firing sequences
	How to program for events?
	What to do now?

	The tools

	Part III: Advanced topics
	Part IV: Putting it all together
	About the Author
	References
	Online communities
	Books
	Magazines
	User Groups
	Links
	An excellent explanation of the ACID principles is available on http://www.arsdigita.com/books/panda/databases-choosing

