
ROC276

Introduction to Database Design

Ted Roche
Ted Roche & Associates, LLC

http://www.tedroche.com

If you're only ever going to have two salesman, why create a separate table for them? And if it's
always going to be Bill and Bob, why not just include their names in the sales order? If the road
to Hades is paved with good intentions, intentionally and unnecessarily violating the basic
principles of normalization is the express lane. This session reviews the principles of data design
analysis, normalization and naming conventions.

Copyright © 2004 by Ted Roche. Licensed under the Creative Commons ShareAlike-Attribution
License 1.0. See http://creativecommons.org/licenses/by-sa/1.0/ for details.

Introduction
A fellow developer once asked me “Is it possible to develop a good application from a
bad data design?” What a good question! I pondered for a few moments before replying
that yes, a good application could be created from a bad data design, but it was a lot more
work to create and a lot more work to maintain than one created from a good data design.

So, here we are, lazy programmers all. Lazy is one of the ultimate compliments for a
programmer: it means that they will find a way to do things efficiently once, so that they
don't need to go back and fix things and they don't get stuck doing boring things over and
over again. Good data design is the lazy programmer's way to ensure that the design is
right up front, that it is flexible enough to support change, and that it is rugged enough to
support the needs of the application.

Terminology
First, a quick terminology review for those new to database design.

A field is a single piece of information, such a person’s first name or an item’s price.
Divide your information so that fields can stand on their own, and don’t need to be sub-
divided when you are processing. For example, if your part number is composed of a part
type, a region code, a rating and a sub-part number, such as AN-33-X4-1234, it is often
be better to break that information into separate fields and combine it when needed, rather
than to constantly split the field when looking for all parts from one region.

Each field has a single datatype. Datatypes specify that a field holds a particular kind of
information; has upper and lower limits on their capacity; and are restricted on what kind
of information they can hold. Fields may be character, integer, date, datetime (a
combination of date and time), numeric, double, float, currency logical (true or false),
memo (very long free-form text or binary data). Specialized datatypes exist to hold OLE
information (general fields), Macintosh binary (picture fields), but are rarely used.

A collection of fields that holds a single piece of information forms a record. For
example, you might record a check received from a customer as:

Field name Type Data
Customer Number Integer 4321
Check Number Integer 5678
Amount Numeric (9,2) $910.11
Date Received Date 22 July 2001

A collection of these records would form a table. The table of data can be viewed in
many ways, but the standard form used by the Fox BROWSE command looks like this:

Customer Check Amount Date
1243 3121 232 01/01/1901
3232 43243 3343 02/02/2002
23232 42 43.34 03/03/1903

Figure 1: Why do you think they call them tables, rows and columns? Data is often viewed rectilinearly.

This geometry leads to other names for the items, records are often called rows and fields
columns. A row or record is often more formally called a tuple.

A key is an expression composed of one or more fields that is used to link records from
different tables together, to speed access to a record, or to temporarily sort records into a
particular order. Keys are stored in indexes. Different physical implementations can be
created in different database engines. Visual FoxPro supports stand-alone indexes (IDX
extensions), compound indexes (CDX) and structural compound indexes (CDX).

A primary key uniquely identifies each record in a table. A candidate key is another key
that could also uniquely identify a record, but it was not selected as the primary key. A
foreign key is a primary key column duplicated in another table, where it links the table
to its originating table.

A relation links two tables, primary key to foreign key. Cardinality describes the
potential number of records in the relation. Since a primary key must be unique, one side
of the relation is always one or zero. The other side can be zero, one or many. The “one”
side is often called the parent and the other side the child. While there are different
notations, most are pretty readable: in text, “one-to-many” is 1:M, “one-to-zero-or-many”
is 1:0,M and “one-to-zero-or-one” is 1:0,1. See Figure 2 for typical graphical
representations of the different relations.

One-to-One One-to-Zero-or-One One-to-Many One-to-Zero-or-Many
Figure 2: Graphical representation of the cardinality of relations.

It's a good practice to start out with a logical database design: a design that expresses the
entities and relationships without regard for the practical limitations of the underlying
database engine. This is following the principle of “First, get the design right, then make
it practical.” In reality, disk space and data engine performance issues make the need for a
second physical database design often unnecessary.

Normalization
The fundamentals of normalization are pretty easy, despite the
sometimes imposing terminology. The purposes of normalization are to
eliminate repetition in the data that takes up unnecessary space, forces
us to do extra work, and can lead to misrepresented information. Chris
Date cleverly summed it up years ago as “the Key, the whole Key, and
nothing but the Key.” Failing to properly normalize a data design
results in repetitive code, difficultly in keeping the data model
consistent, and incorrect query results. Intentional denormalization is
often justified by claiming the performance would be unacceptable

Premature optimization,
whether the

denormalization of data
or the improper

combining of entities, is
a major source of
database anguish.

(without testing the hypothesis) or that the coding would be too difficult. This well-
intentioned premature optimization, whether the denormalization of data or the improper
combining of entities, is a major source of database anguish. This section covers the
textbook definitions of normalization with the usual simple examples, and then digs into
some much tougher real-world examples.

First normal form: no repeating groups

Example: order table with Item1, Price1, Quantity1, Item2, Price2, Quantity2, etc.
Solution: move the individual lines of order detail to their own separate table.

Figure 3: Reduce long, tall tables to one-to-many relationships by removing repeating groups to achieve
first normal form.

Second normal form: full primary key required for each column

Note: I am an advocate (some would rightly say fanatic) for single-field, integer, non-
data-bearing primary keys. There are a bunch of good reasons for this, covered later.
However, for the discussion of the 2nd normal form, consider the “natural” primary key as
those fields that make up unique identification of one record.

Example: An order detail record has fields of customer number, part number, part
description, quantity and price – for this system, let's suppose the price can be changed
either in the order detail or in the inventory table so that price is appropriate in the detail
record. But the customer number is not appropriate as it should be the same for all of the
detail items of a single order – it depends on order number but not on the sequence
number. Solution: remove the customer number to the order header.

Figure 4: The customer identification should not be in the sales detail table, since it is the same for every
detail of an order, it should be in the sales order header table.

Third normal form: Column values depend on the key and not on other column values.

Example: Order detail with ItemNo, Description, Price, Quantity. However, description
should not change and is bound to ItemNo, not to the primary key, so it should be
eliminated from the order detail record.

Figure 5: The item description is redundant, dependent on the item number and not the primary key.
Therefore, it should be removed from the sales detail table to an item table.

Fourth normal form: (also known as Boyce-Codd normal form) Takes the rules of third
normal form and applies them to all candidate keys.

Example: In a Sales Order Detail Table, there's a sequential line number that sorts the
detail lines for a business requirement. The Order number is also included for support of
another system. Together, they form a candidate key (another key that uniquely identifies
each row and could be a candidate in the contest for primary key). If the customer number
was included in the sales order detail, you can see that it is dependent on the order
number field, but not the detail line field, pointing out that there is either a problem in the
key selection or in the inclusion of this field in the table.

Figure 6: Boyce-Codd Normal Form requires 3rd Normal form for all fields based on the primary key and
on any valid candidate keys. Order number and detail line form a natural primary key, but customer
number depends only on the order number, not the line, and should be migrated to the order header.

So, what does all this normalization do for us?
Once the data has been normalized, it will be easier to manipulate, since each element of
the data is represented in only one place in the data model. If the normalization step was

skipped, duplication of data would mean that repetitious code would need to be written to
update, delete, and insert data into multiple places in the model. If you catch yourself
writing code like that, check the data model for denormalization.

Relational Integrity Issues
Unlike the real world, we have the ability to make rules in the database that there can be
no child record orphaned without a parent. We may also decide that the deletion of a
parent record will result in the deletion of all related records, and that records can be
entered only if their lookup values are valid. Different database engines enforce these
rules in different ways. Some use declarative referential integrity (DRI) where the
referential constraints are declared as part of the table definition. Visual FoxPro, like
many other database engines uses a different technique of trigger-based referential
integrity, where Insert, Update and Delete triggers fire to perform the appropriate rules
enforcement. Visual FoxPro includes an RI Builder, accessible inside the data design
surfaces, and generates RI code as stored procedures within the database container. There
were and are issues with this builder; check out the Microsoft Knowledge Base and
popular FoxPro forums for a list of issues and work-arounds.

Check out Stephen Sawyer's code at http://www.stephensawyer.com/ for an alternative to
the Microsoft supplied RI Builder.

Non-data-bearing primary keys
One of the more common debates in data analysis is whether to use the “natural” primary
key within the data or whether to create an artificial key whose sole purpose is to be the
unique identifier for the record. There are valid arguments for both sides, and there are
extreme cases where one side of the other has a clear advantage. In the middle, though,
the answer comes down to compromise and choosing the standard that works for you.

The arguments against non-data-bearing primary keys include: bloated diskspace and
bandwidth, potential to run out of keys, and the hassle of generating keys (pre-VFP8).

The use of non-data-bearing primary keys eliminate multiple-field keys, which are harder
to manipulate. It also eliminates the need to ever change a primary key, since it has no
meaning in the system. This, in turn, eliminates an entire class of relational integrity
triggers.

My preference is to use the non-data-bearing primary keys, auto-incrementing integers
when available, on every table.

Active flags vs. deleting records
Deleting a record removes information from the system. Deletion should only be allowed
in the situations where no transactions were actually performed using that information.
Fox example, if a record was inadvertently added twice, but no work done on that record,
deleting the record doesn't change the data significantly. In other cases, the record should
be flagged as inactive.

Example: Fred the Salesman leaves. Fred's Salesman record should be flagged as
inactive. Clients assigned Fred as their salesman should be re-assigned. Sales that Fred

performed should continue to carry the PK of that salesman. Commission and payroll
processing needs to support inactive flag, if applicable.

Deleting data can change history, so unless the system is a current snapshot and all past
history is journaled in such a way as to support deletions, add flags to entities likely to be
“logically deleted” so they can be flagged as inactive instead.

Naming Conventions
Visual FoxPro suggests several naming conventions in its Help file; search for “Naming
Convention.” Here are my general suggestions:

– Single character datatype, per the Help file (d for Data, y for Currency, etc.)

– Field names limited to ten characters for ease of use with free tables, temporary
cursors and matching index names

– Keys end in “PK or “FK” and have the table name abbreviated, i.e., iCustPK is
the customer primary key in the Customer table and iCustFK is the customer
foreign key in another table.

– Avoid the use of underscores as they consume precious space.

– Avoid plurals both for space consideration and for consistency. You would expect
the Client table to contain more than one Client, right? So Clients is pretty
obviously just another letter consumed. Some gurus argue that tables should
always be plural. Whichever technique you choose, be consistent!

– Consistency is the single most important guideline. If a number is “Num” in one
table, “No” in another and “Nr” in a third, you will never get them right. Choose
one and establish it as the standards.

– Write down all of your conventions (something called “documentation”).

Naming conventions have powerful and beneficial effects in a system. When different
prefixes are used for variables (the 'l' for local, 'g' for global, etc.), the chances of a field
name and a variable being confused is very unlikely, saving you from some of the more
difficult-to-debug problems. When applied consistently, they make the code easier to read
and understand.

Using Tools
Man is a tool-using Animal. Nowhere do you find him without tools;

without tools he is nothing, with tools he is all.
Thomas Carlyle

I think tools are an absolute necessity for a good data design. The tools do not need to be
fancy, have gigabytes of RAM or cost thousands of dollars, although there are some neat
toys out there that meet those criteria.

There are several purposes to data design:

1. Completely analyze the problem to ensure you have covered the entire problem space.

2. Creating a document to help you and others remember and understand the system.

Tools also let you interact with the data model, or
generate scripts to effect changes. The xCase
product, used to generate the data diagram
illustrations here, has a fantastically flexible
engine that can do all of the above, and let you
interact, two-way between the data model and the
data on disk. In addition, the xCase metadata is
stored in dbf format, where it's relatively easy to
query and perform global changes. I have no
financial interest in the product, but I do
encourage you to check it out.

Documents produced by case tools not only make
inexpensive wall art, but can become very useful
tools for developers to reference on a daily basis.
Since the tools can manipulate data structures, it is a great idea to only allow changes to
the data model through the case tool, ensure the documentation is always up to date.

The Laury Group, Inc.
Placement Data System II
October 16, 1999

have describe

has

is referred by

describes hasdetermines

Generates

Results in

defines

Describes

belongs to

can have

requires

make up

describeconsists of

have describes

can belong to

describes

describe

describes

describe consists of

have

describes
describes

describes

fills

are made up of
Calls to create

Supervises

Calls in

supervises

is billed for

recruit

Receive
qualify for

Receives agenda for

Receives Invoices for

Is the primary contact for

Describes

iEmpPK:I

iEmpStatFK:I
iEmpRaceFK:I
iRefByFK:I
lEmpBonus:L
iEmpClasFK:I
iEmpRecrFK:I
cEmpCode:C(8)
cEmpNumber:C(10)
cEmpFirst:C(20)
cEmpMidIni:C(1)
cEmpLast:C(25)
cEmpAddr1:C(30)
cEmpAddr2:C(30)
cEmpCity:C(17)
cEmpState:C(2)
cEmpZip:C(10)
cEmpPhnAC:C(3)
cEmpPhone:C(8)
cEmpPhnExt:C(6)
cEmpAltAC:C(3)
cEmpAltPhn:C(8)
cEmpAltExt:C(6)
cEmpCellAC:C(3)
cEmpCellPh:C(8)
cEmpBeepAC:C(3)
cEmpBeeper:C(8)
cEmpEmail:C(50)
lEmpPermOK:L
mEmpNotes:M
cEmpPhoto:C(40)
cEmpResume:C(40)
dEmpResRec:D
dEmpInterv:D
cEmpGender:C(1)
cEmpSkills:C(1)
cEmpAtt:C(1)
cEmpPres:C(1)
cEmpSSN:C(11)
dEmpDOB:D
lEmpMedEl:L
lEmpMedCov:L
lEmpCautn:L
mEmpAvail:M
cEmpAvTerm:C(1)
dEmpAvStrt:D
dEmpAvEnd:D
dEmpLstSpk:D

Employee

Client

iClientPK:I
iIndustFK:I
iCliStatFK:I
iClCrStaFK:I
iCliEnviFK:I
iContactFK:I
iBillToFK:I
iAgendaFK:I
cClCode:C(10)
cCode:C(5)
cClName:C(30)
cClAddr1:C(25)
cClAddr2:C(25)
cClAddr3:C(25)
cClCrossSt:C(25)
cClCity:C(18)
cClState:C(2)
cClZip:C(10)
cClPhoneAC:C(3)
cClPhone:C(10)
cClPhnExt:C(6)
cClFaxAC:C(3)
cClFaxNo:C(13)
cClWebSite:C(40)
cClEmail:C(40)
cClContact:C(25)
cClCntTitl:C(25)
tClStart:T
tClEnd:T
iClNoOfEmp:I
cClBillCnct:C(25)
iClInvLevl:I
lClConsult:L
iClAgenFmt:I
iClAgenCnt:I
nClComm:N(6,2)
mClNotes:M
nClLastJob:N(4,0)

iSkillPK:I

cSkillCode:C(10)
cSkillDesc:C(40)
lSkillInac:L

SkilliEmpSkilPK:I

iEmpFK:I
iSkillFK:I
cESklLevel:C(1)
iESklScore:I
cESklDesc:C(30)
mESklNotes:M

EmpSkill

iContactPK:I

iClientFK:I
iRoleFK:I
cCntCode:C(2)
cContact:C(30)
cCntFirst:C(20)
cCntLast:C(20)
cCntAddr1:C(30)
cCntAddr2:C(30)
cCntCity:C(25)
cCntState:C(2)
cCntZip:C(10)
cCntPhnAC:C(3)
cCntPhone:C(13)
cCntPhnExt:C(6)
cCntFaxAC:C(3)
cCntFax:C(13)
cCntEmail:C(40)
dCntDOB:D
nCntInvLim:N(10,2)

Contact

BookDate

iBookDtPK:I
iBookingFK:I
dBDBkDate:D
lBDBooked:L
tBDArrive:T
tBDLeave:T
tBDActStrt:T
tBDActEnd:T
nBDLunch:N(3,0)

iJobCatPK:I

cJobCCode:C(10)
cJobCDesc:C(35)
lJobCInact:L

JobCateg

iBookingPK:I

iEmpFK:I
iJobFK:I
iCIBFK:I
iSupervFK:I
dBkWeekEnd:D
cBkDesc:C(80)
lBkSpcSchd:L
tBkStart:T
tBkEnd:T
lBkReturn:L
mBkNotes:M
nBkBillRate:N(6,2)
nBkPayRate:N(6,2)
lSunRate:L
cBkChkDist:C(1)
iBkChkNo:I
dExpADP:D
dExpInv:D
tBkEntry:T
tBkModify:T
cBkUser:C(10)

Booking

EmpStat

iEmpStatPK:I
cESCode:C(10)
cESDesc:C(40)
lESInact:L

iCliRatePK:I

iJobCatFK:I
iClientFK:I
nCRRate:N(6,2)

CliRate

iJobPK:I

iClientFK:I
iDeptFK:I
iJobCIBFK:I
iJobSuprFK:I
iJobBillFK:I
iJobCatFK:I
iJobStatFK:I
tJobStart:T
tJobEnd:T
cJobNum:C(10)
cJobRptToF:C(10)
cJobRptToL:C(15)
cJobRptAC:C(3)
cJobRptPhn:C(8)
cJobRptExt:C(6)
cJobDept:C(40)
cJobRptLoc:C(80)
mJobNotes:M
cJobWrkLd:C(1)
nJobPctPer:N(3,0)
nJobHrsWk:N(5,2)
cJobDesc:C(40)
cJobRptCmt:C(80)
lJobInvSep:L
tJobModify:T
cJobUser:C(10)

Job

iEmpClasPK:I

cECCode:C(10)
cECDesc:C(30)
lECInact:L

EmpClass

iIndustPK:I

cIndCode:C(10)
cIndDesc:C(30)
lIndInact:L

Industry

iJobSkilPK:I

iJobFK:I
iSkillFK:I
cJSLevel:C(1)

JobSkill

Duty

iDutyPK:I
cDutyCode:C(10)
cDutyDesc:C(30)
lDutyInact:L

Dept

iDeptPK:I
iClientFK:I
iContactFK:I
cDptCode:C(10)
cDptName:C(40)
cDptAddr1:C(20)
cDptAddr2:C(20)
cDptCity:C(20)
cDptState:C(2)
cDptZip:C(10)
cDptAC:C(3)
cDptPhone:C(8)
cDptPhnExt:C(6)

iJobDutyPK:I

iDutyFK:I
iJobFK:I
nJDPercent:N(3,0)

JobDuty

iEmpIndPK:I

iEmpFK:I
iIndustFK:I

EmpIndus

iRolePK:I

cRoleCode:C(10)
cRoleDesc:C(30)
lRoleInact:L

Role

iJobStatPK:I

cJobStCode:C(10)
cJobStDesc:C(25)
lJobStInac:L

JobStat

iTaskPk:I

cTaskCode:C(10)
cTaskDesc:C(25)
lTaskInact:L

Task

iJobTaskPK:I

iTaskFK:I
iJobFK:I

JobTask

iEmpAvPK:I

iEmpFK:I
dEADate:D
lEAAvail:L

EmpAvail

iCliStatPK:I

cCSCode:C(10)
cCSDesc:C(25)
lCSInact:L

CliStat

iEmpRacePK:I

cERCode:C(10)
cERDesc:C(20)
lERInact:L

EmpRace

iClCrStaPK:I

cCCCode:C(10)
cCCDesc:C(20)
lCCInact:L

ClCrStat

iEmpRecrPK:I

cEmpRCode:C(10)
cEmpRDesc:C(30)
lEmpRInact:L

EmpRecru

iClCommPK:I

iEmpFK:I
iClientFK:I
nClCommPct:N(6,2)

ClCommis

iCliEnviPK:I

cCECode:C(10)
cCEDesc:C(40)
lCEInact:L

CliEnvi

Figure 7: An Entity-Relationship diagram for a moderately complex application. For ease of presentation,
the primary tables are in red, many-to-many tables in orange, and lookup tables in green.

Real-World Problems
Fun as all the theory it, putting it into practice can be challenging. Let's discuss, though

Quick Facts
Product: xCase, www.xcase.com

Version: 7.4, April 2004

Price: $399 (Fox) to $799
(Professional) in several different
packages

License: commercial, 1 per user

Features: two-way design
interaction & scripting, color printing,
data migration, target data server
switching, much more

not necessarily solve, a couple of classic real-world problems.

People, Places and Things
Contact information for people and companies can be very difficult to model. There are
many people in the typical business transaction: yourself, your employees, your customer,
their employees, the delivery people, your lawyer, your accountant, an outside inspector,
third-party vendors, etc. One common design decision is to lump every human being in
the system into a single table, People, and then map them into all the places they fit in the
data model. While it is the appropriate decision for some systems, for others, it can be a
fatal error. From the logical analysis standpoint, a vendor is a vendor and customer is a
customer. If you later decide to blend them into a shared table, that is a later optimization,
and not a wise first step.

Another important step in the logical analysis phase is to declare the rules of the system
in as simple a set as possible. It's important to understand that programmers and analysts
try hard to work out all of the “edge” and “corner” cases to ensure they understand the
valid one-to-many and many-to-many relationships in a system. However, it is easy to get
carried away with this “Yeah, but what it...” game and turn it into a game of “Can You
Top This,” whereby everything is related to everything in a many to many relationship.

Let's consider a phone contact management system. For simplicity, all contacts are the
same; – their classification and grouping is outside the scope of the example. Each
contact may have one or more phone numbers. It is desired to designate a “primary” or
“main” phone number. Here's one possible design, first laid out as declarative sentences,
and then diagrammed.

– There are two main entities: contacts and phone numbers.

– A contact can have many phone numbers.

– One phone number could be designated as the main number.

– Different phone numbers should be differentiated by “types.”

– There may be zero or many phone numbers for each type.

– For this model, contacts stand alone; they do not share phone numbers with other
contacts.

There are several different solutions to this problem, and each have advantages and
disadvantages, benefits and downsides. You'll want to examine and exercise the model
carefully to ensure it meets your needs. One of the interesting questions I found when
presenting this model was the question of whether an individual contact should be
allowed multiple phone numbers of the same type. While the datqa model can surely be
developed to support it, the user interface can become intricate, difficult and confusing.
Microsoft Outlook solves this problem by having a fixed set of phone types, including
“Home” and “Home2,” “Work” and “Work2,” as well as “Other,” and restricting entry to
one phone number per type. A similar solution is worth considering.

Figure 8: One proposed solution to the contacts problem has a one-to-may relation from contact to phone,
and two phone foreign keys stored in the contact table in a one-to-one relationship.

Documents as data
Another interesting problem to consider occurs in a whole series of applications that can
be generalized as supporting a document of information. That document could be a
facilities inspection, a written test, or an assembly process. Common elements are used,
assembled following some sort of formula, and results are recorded. Over time, not only
do components change, but the recipes to assemble them change as well. Developing this
model can be an involved process. The trick is to balance the needs of the system with the
cost of adding complexity. A more complex model is more difficult to implement and
maintain, and it can introduce unintentionally “legal” data entries that don't have an
analogue in the real world.

For example, an inspection is the intersection of a facility with a scheduled series of tests
with results that might either be finite (True/False), a range (0-100 ppb), a text blob
(narrative) or a binary blob (actual test result output). An individual inspection takes
place with a version of set of tests (the “current” one, hopefully). When later reviewing
historical material, you can use the preserved version information to determine if a
particular test was included in the then-current regimen to decide if the test results should
be included or excluded from the historical analysis.

Figure 9: An example of a document model: inspections performed on facilities are a set of tests (1:M) and
their results.

Conclusion
Data analysis and design is a critical early step in the successful development of an nal

application. Taking care in the early phases to ensure that design is well thought-out -
well normalized, standardized and appropriate for the problem – has a multiplier effect
down the line in the success of developing, implementing and maintaining an application.

About the Author

Ted Roche develops data-centric applications for Web, client-
server and LAN use. He is a principal in Ted Roche & Associates,
LLC, http://www.tedroche.com, where he offers consulting,
training and mentoring as well as software development services.
Ted is author of Essential SourceSafe, co-author of the award-
winning Hacker’s Guide to Visual FoxPro 6.0, and a contributor to
five other FoxPro books.

To Learn More:
Akins, Marcia, Andy Kramek, Rick Schummer, 1001 Things You Wanted to Know About
Visual FoxPro, 2000, Hentzenwerke, ISBN 0-9655093-3-8, especially Chapter 7,
“Working With Data”

Akins, Marcia, Andy Kramek, KitBox column in FoxTalk magazine: December 2003:
“Addressing, the issues” covers the name and address modeling issue, and July 2004:
“Let 'er rip” discusses hierarchical organization data models.

Booth, Jim and Sawyer, Stephen, Effective Techniques for Application Development with
Visual FoxPro 6.0, 1998, Hentzenwerke, ISBN 0-96550-937-0, especially Appendix
Two: Relational Database Design.

Fleming, Candace C. and von Halle, Barbara, Handbook of Relational Database Design,
1989, Addison-Wesley, ISBN 0-201-11434-8

Hernandez, Michael J., Database Design for Mere Mortals, 1997, A-W Developers Press,
ISBN 0-201-69471-9

