FoxTalk &

By Ted Roche

I've never had a client show up for a product
demonstration with a stopwatch, but all of my
clients are well aware that time is money. While
we developers may have used our stopwatches to
benchmark custom routines in order to tune
software performance or to select a DBMS, the raw
performance speeds of code are usually not the
concern of the client. What does influence the
client is the perceived speed of the application —
how fast it appears to solve the problem for which
it was purchased. We may be called upon to
present FoxPro as the solution.

FoxPro 2.0 is a great system, with good perfor-
mance characteristics and maintenance tools. So
try to sell it to a client. Sit them down before a
machine and start your application. FoxPro starts
toload... and load... and load. When the startup
screen appears, try to remember to breathe again,
and start your sales pitch.

MakeANSI eliminates this awkward moment
by giving you the tools to present a snappy startup
screen immediately upon starting your application.
Entertaining the operator while FoxPro loads may
seem like a frivolous use of code, but pause and
consider it for a minute. When you click the
mouse or hit a key to start an application, do you
get a response from your system? With the
growing popularity of GUI-based systems, clients
have come to expect immediate feedback from
their actions: press a button and an icon on-screen
is depressed. I have found that using a
MakeANSI-generated startup screen improves a
client’s opinion of the application, since they feel
they get a reaction from starting the system and
therefore feel the entire system is more responsive.

MakeANSI allows you to design a screen
interactively, using familiar FoxPro commands,
rather than requiring you to learn a new set of
controls for a screen painter. MakeANSI creates a
file that can be displayed from the DOS prompt.
This file recreates the original screen saved from
FoxPro, reproducing the varied colors, intensities,
and blinking attributes possible in the FoxPro
screen. Since it contains ANSI escape codes, the
ANSISYS device driver must be loaded in
CONFIG.SYS for it to display properly. (See the
ANSI sidebar.)

Continued

7

P FoxTalk

Pinnacle Publishing, Inc.

How to use MakeANSI

There are four steps to creating and integrating a
MakeANSI-generated screen into your application.
These steps are described below in detail, but here
is an overview:

1. Create the title screen you wish to present to
the operator.

2. Save the screen as a memory variable and the
memory variable to a .MEM file.

3. Run MakeANSI to create the text file.

4. Integrate the screen into your application by
creating a batch file to display the startup
screen and invoke your application.

Since this is a developer utility, it is assumed the
reader is familiar with the FoxPro and DOS
commands discussed. For further information on
those commands, please consult the appropriate
reference manuals.

Creating the title screen

If you have an existing startup screen, you may be
able to jump right to the next step, “Saving the .
Results.” However, you might want to skim this
section for some ideas on “jazzing up” the screen
you have.

FoxPro 2.0 contains a number of commands for
manipulating screen characters. Since the Com-
mand Window is separate from the display screen,
you can interactively paint the screen by typing
commands from the Command Window. The
commands @...SAY, @...BOX, @...CLEAR TO...,
and @..FILL allow you to produce a variety of
characters, patterns, and effects. The COLOR and
COLOR SCHEME clauses that can be used with
these commands have simplified screen painting
since the FoxBASE days! You may want to refer to
your FoxPro reference books to review all of the
capabilities of these commands.

To aid with placement of objects at a particular
spot on the screen, I have found the command:

ON KEY LABEL RIGHTMOUSE :

WAIT WINDOW NOWAIT

"ROW “+LTRIM(STR{MAOW{}))+ ;
* COL "+LTRIM{STR{MCOL{}})

to be of enormous help. After typing this com-
mand, you may press the right mouse where you
want an object to be placed, and the coordinates
will appear in a WAIT window. [Editor’s Note:
See Matt Peirse’s utility, RULER.PRG, in the August
issue for a more extensive positioning aid.]

The method I use to design the screen usually
involves a combination of programmed and

interactive techniques. Typically, I start from the
Command Window and then paste the resulting
commands into a program as I find effects I like.
When you've developed routines that create your
company logo or other patterns, you can save them
as programs and use them to start the design
process. Simple FOR..NEXT loops with FoxPro’s
“Special Characters” can produce regular “plaid”
or graduated backgrounds. An example program,
used to develop the background for the Make ANSI
program, is included with this article.

Saving the results

Working from the Command Window, you may
save the current screen image to a memory vari-
able using the “SAVE SCREEN TO m.MemVar”
command, and likewise restore the screen with the
“RESTORE SCREEN FROM m.MemVar” com-

- mand. In addition, if you “SAVE SCREEN to

m.Screenl | m.Screen2 | m.Screen3” before each
major change, you can “RESTORE SCREEN from
m.Screen3” to give yourself an “UNDO” feature to
the screen painting.

After saving the screen image to a memory
variable, save the data to disk with the command
SAVE ALL LIKE Screen* to ScrnFile. MEM. You
could save a series of these .MEM files to use as
templates for future work as well. Another
advantage to being able to save the screen memory
variables to disk is that the screen does not have to
be designed in one session. Any time you find
more pressing things to do, just follow the instruc-
tions above to save your work in progress. Recall
the screen with RESTORE FROM ScrnFile. MEM
ADDITIVE and RESTORE SCREEN FROM
m.Screen.

Running MakeANSI

Run MakeANSI by invoking the MakeANSL.BAT
batch file. Of course, a MakeANSI-generated
startup screen will immediately appear, and the
MakeANSI FoxPro program will load. You will be
prompted for the name of the .MEM file saved in
the step above. After specifying that file, you will
be asked for the name of an output file. Any valid
file name can be specified — this is the file name
you specify within your startup batch file, as
described in the following section. MakeANSI will
begin to generate the ANSI escape codes to repro-
duce your screen from DOS. To entertain you
while this happens, the screen will clear and
display (without color) the screen being generated.
When file generation is complete, you are returned
to the DOS prompt.

October 1992

Pinnacle Publishing, Inc.

FoxTalk%d

Adding the screen to your application

A sample batch file is included here to show how
the generated screen will be used. When your
users invoke this batch file, the generated screen
image is TYPEd to the screen before the applica-
tion is started. The FoxPro startup option -T,
suppressing the FoxPro title screen, ensures that
the screen will not be disturbed by FoxPro’s
startup until your program is in control.

When your program starts, you may want to
further manipulate the startup screen by adding a
version number, date and time, or other informa-
tion on top of the displayed screen. Changing only
a small portion of the screen, or creating a simple
animated effect, can add pizazz to your startup.
Don’t, however, expect your users to patiently
wait through several minutes of animation each
and every time your system starts. That said,
prudent use of some of the newer commands, such
as the SCROLL command, can create striking and
dramatic effects to let the operator know the
system is now ready for input.

There are two different behaviors that will be
seen with a MakeANSI-developed startup. If your
users are running the interactive FoxPro (i.e.,
starting up with FOX, FOXPROL, or FOXPROLX),
a few seconds after the ANSI screen is displayed,
FoxPro will take over, clearing the screen first to
black, then blue, before your application takes
control. At that point, you may want to restore the
screen from a copy of the MEM file.

But if you are distributing an application,
where a polished presentation is often more
important (by running FOXR YourApp.APP or a
compact or standalone .EXE), the screen will not be
cleared prior to your application gaining control.
This can allow you to create a much smoother
transition during startup. If you discover that
your screen is still clearing during startup, it may
be that certain command settings in your configu-
ration file (CONFIG.FP) are responsible. For
example, setting SCOREBOARD or STATUS either
ON or OFF will cause the screen to be blanked.
Since these commands are set OFF as the default
and rarely used (note the Commands & Functions
manual remarks that these commands are “In-
cluded for backward compatibility”), they prob-
ably can be deleted from your CONFIG.FP for a
smoother startup appearance.

How MakeANSI works

A screen memory variable contains information
about the characters displayed on the screen: their
values, colors, and attributes. When saved to disk

ANSI Escape Codes

ANSLSYS is an enhanced device driver for the
standard input and output devices, and is
provided with MS-DOS. It takes up little
memory (approximately 4K) and can be
“loaded high” if your memory manager (or
later version of DOS) allows this feature. It
must be loaded into the computer at startup
from the CONFIG.SYS file, with a line like:

DEVICE = ANSI.SYS

After the device is loaded, escape code se-
quences sent to the screen when DOS is in
control of the display will have the effect of
changing the resolution, colors, or attributes of
the display. These escape codes may be sent to
the screen as part of the PROMPT or ECHO
commands, or TYPEd or COPY’d to the screen
from a file. Here is a list of some of the effects
and their codes:

ERASING THE SCREEN
Esc[2J Clears entire screen.
Esclk Erases from current cursor
position to right side.

CHANGING DISPLAY
Esc{#;...;#m Changes display attributes or colors:

Attributes:

0 = Reset - white/black, 1 = High intensity on,

4 = Underscore {Monochrome only), 5 = Blinking,

7 = Inverse-black/white, 8 = Invisible-black on black

Foreground Colors:
30 = Black, 31 = Red, 32 = Green, 33 = Yellow,
34 = Blue, 35 = Magenta, 36 = Cyan, 37 = White

Background Colers:
40 = Black, 41 = Red, 42 = Green, 43 = Yellow,
44 = Blue, 45 = Magenta, 46 = Cyan, 47 = White

CHANGING SCREEN MODE
Esc[=#h or Esc{=#] changes screen to black & white (BW)
or color {C) with rows by colums resolution of:
D = BW 40x25, 1 = C 40x25, 2 = BW 80x25, 3 = C 80x25,
4 = C 320x200, 5 = BW 320x200, 6 = BW 640x200
Esc[=7h enables end-of-line-wrap, Esc[=71 disables it

CURSOR POSITIONING

Esc[r;cH or Esclr;
cf repositions cursor at Row r, Colum c
Esc[IA Move 1 TOWs up. :
Escl[1B Move t rows down.
Esclel Move ¢ columns right.
Esc[cD Move ¢ colums left,
Escls Save current curser position
for restoring later.
Esclu Restore to last saved cursdr position.

as a .MEM file, two bytes are written for each
screen position (for example, an 80 x 25 screen
would have 4,000 bytes of information: 80 x 25 x 2
=4,000). The first byte of each pair specifies the
actual character displayed. The second byte

Continued

October 1992

9

B FoxTalk

Pinnacle Publishing, Inc.

specifies the characteristics of that screen position:
the character color, background color, whether the
character should blink, and whether the character
should be displayed in high intensity. See the
remarks at the beginning of the MakeANSI pro-
gram for the details on how this information is
encoded into one byte.

MakeANSI asks you to specify the input file
name, using the built-in GETFILE() FoxPro func-
tion, and then asks for the output file name using
the PUTFILE() function. MakeANSI then reads the
-MEM variable into a string and loops through the
processing of that string into the equivalent ANSI
codes. See the sidebar on ANSI codes for an
explanation of the syntax of those commands.
When MakeANSI has completed the processing of
the string, it adds the ANSI commands to “home”
the cursor and reset the DOS colors to their default
so that the user will be presented with a “normal”
DOS screen upon return from your FoxPro appli-
cation. You may need to adjust these settings if
your default environment differs from the default
DOS dull-white on black screen.

Adding MakeANSI to your toolbox

Like many of the programs contained on these
pages, MakeANSI is skeletal. The basic ideas of
working with low-level file functions and provid-
ing at least minimal error checking are essential,
but MakeANSI is more of a concept than a finished
work. It is not intended as an end-user tool, but
rather as a utility to be added to a developer’s
toolbox. Developers are encouraged to make the
modifications necessary to fit it to their needs. An
explanation of some of the limitations and areas in
which it could be expanded follows:

* Alert readers will note that Make ANSI reads
and processes all but the last character (the last
two bytes) of the saved screen image. This is
to compensate for a “feature” of DOS that
automatically scrolls the screen when a charac-
ter is typed in the lower right corner of the
screen.

* You are not restricted to running FoxPro in 25-
line by 80-column mode. Fox appears to be
quite happy to run in whatever screen mode it
was started in. If you choose to use an alter-
nate screen mode, such as 43 x 80 or 50 x 80,
make sure that the machines for which the
system is being developed are capable of
displaying that mode.

The screen display can be switched to an
alternate mode before starting FoxPro in a
number of ways. Commercial programs, such

as Ultravision, will alter the screen. Publicly-
distributable or shareware software, such as
EMODE.COM (available in CompuServe’s
FoxForum), will also do the trick. Finally, if
MS-DOS 5.0 is installed, an enhanced option of
the MODE command will switch screen
modes, using the syntax:

MODE CON: lines = yy cols = xx

where yy can be 25, 43, or 50, and xx can be 40
or 80 column mode. Note that it is the
developer’s responsibility to ensure that the
user’s display is placed into the desired mode
before the MakeANSI-generated screen is
displayed.

If you are developing in one screen mode
but intend the users to work in another, be
sure to switch modes before capturing the
screen for MakeANSI to convert. The SAVE
SCREEN TO command captures the entire
screen, and MakeANSI translates the entire
memory variable into an ANSI file. Thus, it
will read and output the correct number of
characters for the screen mode selected when
the screen was saved. An enhancement you
may consider to the MakeANSI program is to
sense the size of the captured screen and offer
the operator the option to change the screen
resolution. Within the MEM file, the memory
variable name, type, and size information are
stored in the 32 bytes preceding the memory
variable’s data. Using low-level file functions
to read and parse this information could also
allow you to enhance MakeANSI to process
-MEM files containing more than one memory
variable (this version of MakeANSI assumes
that the screen variable is the only variable
stored in the file).

* Yet another enhancement that may be attrac-
tive to some developers, especially if many
images are involved, is to save the memory
variables to memo fields using the SAVE...TO
MEMO syntax and then manipulating the
memo field using the string variable functions
in a fashion similar to that in MakeANSI. This
would eliminate cluttering a disk with .MEM
files and provide a .DBF file, which can more
easily be manipulated and distributed.

MakeANSI solves a simple problem: how to
entertain the operator while the software loads.
Far from being a trivial “special effect,” the imme-
diate feedback to users assures them that your
system is designed to respond quickly to their
actions. The MakeANSI utility allows you to
develop this startup screen with a minimum of

10

October 1992

)

w

FoxTalk%

Pinnacle Publishing, Inc.

resources and effort, using a language and tech-
niques with which you are already familiar, and to
deliver this to your end users with a minimum of
overhead on their systems. The techniques dem-
onstrated in Make ANSI show how low-level file
functions and parsing of .MEM files may be
integrated into an application. I hope it stimulates
your imagination on how the expansion of these
techniques may benefit your applications.

* MakeANSI.PRG - create file of ANSI escape codes from a
= saved screen .MEM file

* A MBM file steres a screen image as a 4,000-char string.
* The odd-numbered bytes {1,3.5,7...) are the screen char,

* from the top left corner, left to right, down the screen.
* The even byte {2,4,6,8...) following it is the color

* code for that screen character using the following scheme:

*

* mColorAttr has Bits B8--7--6--5--4--3--2--1

* Bit 8 - Blink Attribute 1 =Yes, 0 = No
* Bits 7,6,5 - Color of background, 0 to 7 {see table)
* Bit 4 - Intensity Attribute 1 = Yes, 0 = No

* Bits 3,2,1 - Color of foreground, D to 7 (see table)

#RAFTEHRTEESARIRNASS anup Startup Sc].een AERFARARRRFRERE R
* If the file exists and not running runtime
if file{ MAKEANSI.MEM") and ! "Support™ § vers{1)
1estore from makeansi.mem additive
restore screen from mScreen
1elease mScreen
else
clear
endif

SETUP
set talk off

private m0ldColor, mCharacter, mESCape, mPrompt, Read_File
private Read_Handle, Read_Size, Read_Point, Read_String
private Write_File, Write Handle

mOldCelor = O

mESCape = chr{27]

* These are the ANSI Escape color codes *

dimension mANSIf{B) &% ANSI (f)oreground coler

mANSIf(1) = '30°
mANSIf(2) = '34"
mANSIf(3) = '32°
mANSIf{4) = '36°
mANSIf{5) = '31°
mANSIf(6) = '35°
mANSIf{7) = '33°
mANSIf{B) = '37°
dimension mANSIb{B) &% ANSI (b)ackground color
mANSIb(1) = '40’
mANSTh(2) = ‘44"
mANSIb{3) = '42°
mANSIb{4) = '46'
mANSIb(5) = ‘a1’
mANSIb(6) = 45
mANSIb{7) = '43°
mANSIb(8) = '47°
dimension mBits{8) &% Array holds bit values of color byte
mBits = 0

ARARAERX AT ETFEZRARARRES SPECIFY I;U
mPrompt = ‘Where is the saved screen .MEM file?'
Read_File = GetFile{ "MEM® mPrompt}
if empty(Read_File)

retuin
endif

mPrompt = ‘Select output ANST text file'
Write_File = PutFile(mPrompt, 'Output TXT','TXT')
if empty(Write File)

return
endif

READ 2

Read_Handle = FOPEN{Read_file.0})

if Read_Handle<=0
WAIT WINDOW “Ertor opening file. Aborting” MNoWait
return

endif

* Move to EOF to determine file size
Read_Size = FSEEK{Read_Handle, 0, 2}
IF Read_Size <= 4032 2& Is File too small?
mPrompt = 'This file does not contain a screen image.’
WATT WINDOW mPrompt NOWAIT
= FCLOSE(Read_Handle) &% Close the file
return
endif

* Move to BOF + 32 and store contents to string
Read_Point = FSEEK{Read_Handle, 32, 0)
Read_String = FREAD{Read_Handle, Read_Size-33)
if not FCLOSE{Read_Handle} &% Close the file

do ErrorChk

return
endif

WRITE
Write Handle = FCREATE{Write File)
if ErrorChk()
return
endif

© *® Home the cursor and clear the screen

if FWRITE{Write_Handle ,mESCape+"[2J"}) = O
do ErrorChk
return

endif

clear
for x=1 to len{Read_string)-2 step 2
mCharacter = substr{Read_String,x, 1)
mColorAttr = asc{substr{Read String,x+1,1})
if mColoTAttr # m0ldColor &% recalculate only if
mOldColer = mColorAttr && the color has changed
=BitSplit{mColorAttr, emBits)
mBlink = iif{mBits(8)=1,"5;","")
mBackColor = mAnsib{4*mBits({7)+2*mBits(6)+mBits{5)+1)
mIntense = iif{mBits{4}=1,"1;",""}]
mForeColor = mAnsif{4*mBits{3)+2*mBits{2)+mBits{1)+1)
ANSIString = mESCape+™["+°0; "+mIntensesmBlink+ ;
mForeColor+”; “+mBackColor+'m”
* send the ANSI color string
if FWRITE{Write_Handle ANSIString) = O
do ErrorChk
return
endif
endif
17 mCharacter && display on screen to entertain
if FWRITE(Write_ Handle mCharacter) = 0
do ErrorChk
return
endif
next

* Home the cursor and reset the coler
if FWRITE{Write_ Handle ,mESCape+”[0;0H"+mESCape+" [0m™) = O
do ErrorChk
return
endif
if not FCLOSE({Write Handle)
do ErrorChk
return
endif
return

Procedure BitSplit

parameters mParam, mBitArray &=& the character to take apart
external array mBitArray & Avoids a BUILD APP errer
private mum & Temportary scratch number
private mExp &% Exponent, Artay Pointer

mum = mParam
for mExp = 7 to 0 step -1
if mNum >=2*mExp
mBitArray(mExp+1) = 1
mum = mNum - 2*mExp

Continued

October 1992

11

P FoxTalk

Pinnacle Publishing, Inc.

else
mBitArray{mExp+1) = 0
endif
next
return

Function ErrerChk
if FERROR() # 0
close all
DEFINE WIND alert FROM 7,17 TO 12,60 DOUBLE COLO SCHEME 7
DO CASE
CASE FERROR{) = 2
reason = 'File not found’
CASE FERROR{) = 4
reason = ‘Too many files open {out of handles}'
CASE FERROR{) = &
Teason = "Access denied”
CASE FERROR({) = 6
reason = 'Invalid file handle’
CASE FERROR() = 8
reason = 'Out of memory’
CASE FERROR{) = 25
Teason = 'Seek error - BOF encountered”
CASE FERROR() = 29
reason = "Disk full'
CASE FERROR({) = 31
teason = 'General failure’
OTHERWISE
Teason = ‘Unrecognized error code '+
Ltrim{Str{FERROR{}])
ENDCASE

ACTIVATE WINDOW alert
@ 1,7 SAY 'Unable to open file'
@ 2,7 SAY 'Reason: ' 4+ reason
@ 3,7 SAY 'Press a key to exit’
set cursor off
wait "
DEACTIVATE WINDOW alert
CANCEL
endif
return FERROR({) # 0 &2 can use as function{) and procedure

* MKANSISC - Make MakeANSI.PRG startup screen
activate screen

clear

set talk off

set sysmenu off

& 0.0 say replicate{CHR{176),80) color RB+/w
@ row{),0 say replicate{CHR{176),80) color RB/w

@ row(},0 say replicate{CHR{176),80) color Bs/w

@ row().0 say replicate{CHR(176),80) color B/w

@ r1ow().0 say replicate(CHR{176),80) color BG+/w
@ row().0 say replicate{CHR(176),80) color BG/w
@ row(),0 say replicate(CHR(176),80) color Gi/w

@ row(),0 say replicate{CHR(176),80) color G/w

@ row().0 say replicate{CHR(176),80) color GR+/w
@ row{).0 say replicate{CHR{176),80) color GR/w

@ tow{).0 say replicate(CHR{176),80) color Re/w

@ row{).0 say replicate(CHR{176),80} color R/w

0 say teplicate(CHR{177).80) color RB+/w
0 say replicate(CHR(177),80) color RB/w
0 say replicate{CHR{177),80) color B+/w
0 say replicate(CHR{177).80) color B/w
0 say replicate(CHR{177).80) color BG+/w
0 say replicate{CHR{177),80) color BG/w
.0 say replicate{CHR{177),80) color G+/w
0 say replicate{CHR{177).80} color G/w
0 say replicate{CHR{177),80) color GR:/w
0 say replicate(CHR{177),80) color GR/w
0 say replicate{CHR{177),80) color R+/w
0 say replicate{CHR{177),86) color R/w

Lo B e R e B W]
-
(=]
=

to 5,40 deuble
FILL to 6,41 coler N/N &% simulate drop-shadows
1 FILL to 6 41 coler N/N

EAH T0 4,33

HFII':ZEFH".IEI

to 22,75 double
2 FILL to 23,76 color N/N

L B R R I e~ R B e B o
M—l-b-t.\ll‘dl\)h)m_.

8,76 FILL to 23,76 color N/N

8.41 CLEAR TO 21,74

0,41 SAY ° Screen MEM = ANST Text File -~
1,41 SAY - By Ted Roche =
em this out for .MEM file; use for .SCR

9,41 SAY * Loading... Please Wait™ color GR+*/B

set sysmenu on

return

* Return control te Command Window; save or
* modify further from there

* SAMPLE BATCH FILES for use:

* REM MAKEANSI .BAT

* Becho off

* type makeansi.scr
* FOX makeansi +R -T
* LS

* REM SAMPLE.BAT

* RECHD OFF

* TYPE STARTUP.SCR

* FOX AppName.APP -T 4R
* CLS

About the author:

Ted Roche is a Senior Programmer for The New
Hampshire Insurance Group in Manchester, New
Hampshire. In six years of analysis, design, and
programming, he has completed a variety of projects in
FoxPro, dBASE, and Clipper for clients in the manufac-
turing, state regulatory, and financial services indus-
tries. Ted is actively exploring opportunities for full-
time employment or long-term contracting in the
central and southern New Hampshire areas. He can be
reached at 603/746-4017, or on CompuServe at
76400,2503. I

Editorial

Continued from page 2

load soft fonts to your HP printer — without
resorting to the RUN command.

Ted Roche gives us an astonishingly simple
and useful technique to provide another form of
output — application startup screens. When I say

“simple,” I don’t mean it was simple to think of, or
to design. Ted is sharing some very special
expertise with us, and he does so in a vastly
entertaining manner.

Chuck Werner extends Scott Grabo's Structure
Builder to allow it to load existing tables into
Scott’s Data Dictionary table. I think you'll agree
that this capability expands the tool in an impor-
tant way. We've received other interesting recom-
mendations for enhancements as FoxTualk readers
continue to build on one another’s achievements.

This process of refinement continues, as
always, in The Workshop. We have some discus-
sion of Whil Hentzen’s USPS Bar Codes by Whil

Continued on page 19

—
N

October 1992

